International J. of Pure and Engineering Mathematics. (IJPEM)
ISSN 2348-3881, Vol. 5 No. II (August, 2017), pp. 85-99
UGC Approved Journal (Sr. No. 62806)

New Subclass Preserving Integral Operator and its properties

S. V. Parmar
Research Scholar, Department of Mathematics, SPPU Pune
S. M. Khairnar
D Y Patil School of Engineering Pune-412105, (M. S.), India
smkhairnar2007@gmail.com

Abstract

In this paper, we introduce a new class of uniformly convex functions defined by a certain fractional calculus operators. The subclass has interesting subclasses like β-uniformly starlike, β-uniformly convex and β-uniformly pre-starlike functions. Properties like coefficient estimates, growth and distortion theorems modified Hadamard product, inclusion property, extreme points, closure theorem and other properties of this class are studied. Lastly, we discuss a class preserving integral operator and the radius of starlikeness, convexity and close-to-convexity for functions in the defined class.

Keywords and Phrases: Fractional derivative, Univalent functions, Uniformly convex function, integral operator, Modified Hadamard Product.

AMS Mathematics Subject Classification. 30C45, 26A33

1. INTRODUCTION

Let S denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic and univalent in the unit disc $U=\{z:|z|<1\}$. Let $U^{*}=\{z: 0<$ $|z|<1\}$ be the punctured unit disc. Also denote by T the class of functions of the form

$$
\begin{equation*}
f(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k} \quad\left(a_{k} \geq 0, z \in U\right) \tag{1.2}
\end{equation*}
$$

which are analytic and univalent in U.
For $g(z)=z-\sum_{k=2}^{\infty} b_{k} z^{k}$ the modified Hadamard product of $f(z)$ and $g(z)$ is defined by

$$
\begin{equation*}
(f * g)(z)=z-\sum_{k=2}^{\infty} a_{k} b_{k} z^{k} \tag{1.3}
\end{equation*}
$$

A function $f(z) \in S$ is said to be β-uniformly starlike of order $\alpha,(-1 \leq \alpha<1), \beta \geq 0$ and all $(z \in U)$, denoted by $\beta-S(\alpha)$, if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}-\alpha\right\} \geq \beta\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| . \tag{1.4}
\end{equation*}
$$

A function $f(z) \in S$ is said to be β-uniformly convex of order $\alpha,(-1 \leq \alpha<1), \beta \geq 0$ and all $(z \in U)$, denoted by $\beta-K(\alpha)$, if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\alpha\right\} \geq \beta\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \tag{1.5}
\end{equation*}
$$

Notice that, $0-S(\alpha)=S(\alpha)$ and $0-K(\alpha)=K(\alpha)$, where $S(\alpha)$ and $K(\alpha)$ are respectively the popular classes of starlike and convex functions of order $\alpha(0 \leq \alpha<1)$. The classes $\beta-S(\alpha)$ and $\beta-K(\alpha)$ were introduced and studied by Goodman [3] and Minda and Ma [6].

Clearly $f \in \beta-K(\alpha)$ if and only if $z f^{\prime} \in \beta-S(\alpha)$. Let $\phi(a, c ; z)$ be the incomplete beta function defined by

$$
\begin{equation*}
\phi(a, c ; z)=z+\sum_{k=2}^{\infty} \frac{(a)_{k-1}}{(c)_{k-1}} z^{k} \quad(a \neq-1,-2,-3, \cdots \quad \text { and } c \neq 0,-1,-2,-3, \cdots) \tag{1.6}
\end{equation*}
$$

New Subclass Preserving Integral Operator and its properties...
where $(a)_{k}$ is the Pochhammer symbol defined by

$$
(a)_{k}=\frac{\Gamma(a+k)}{\Gamma(a)}= \begin{cases}1 & : \quad k=0 \\ a(a+1)(a+2) \cdots(a+k-1) & : \quad k \in \mathbb{N}\end{cases}
$$

We note that $L(a, c) f(z)=\phi(a, b ; z) * f(z)$, for $f \in S$ is the Carlson-Shaffer operator [1]. The fractional derivative operator $J_{0, z}^{\mu, \gamma, \eta}$ of a function $f(z)$ is defined as follows.

For $m-1 \leq \mu<m ; m \in \mathbb{N}$ and $\gamma, \eta \in \mathbb{R}$

$$
\begin{align*}
J_{0, z}^{\mu, \gamma, \eta} f(z)= & \frac{d^{m}}{d z^{m}}\left\{\frac{z^{\mu-\gamma}}{\Gamma(m-\mu)} \int_{0}^{z}(z-t)^{m-\mu-1}\right. \tag{1.7}\\
& \left.{ }_{2} F_{1}\left(\gamma-\mu, m-\eta ; m-\mu ; 1-\frac{t}{z}\right) f(t) d t\right\}
\end{align*}
$$

where the function $f(z)$ is analytic in a simply connected region of the z-plane containing the origin with the order

$$
f(z)=0\left(|z|^{r}\right), \quad z \rightarrow 0
$$

where $r>\max \{0, \gamma-\eta\}-1$ and the multiplicity of $(z-t)^{m-\mu-1}$ is removed by requiring $\log (z-t)$ to be real when $(z-t)>0$ and is well defined in the unit disc.

Notice that $J_{0, z}^{\mu, \mu, \eta} f(z)=D_{0, z}^{\mu} f(z)$ which is the well known Riemann-Liouville fractional derivative operator [8].

The fractional operator $U_{0, z}^{\mu, \gamma, \eta}$ is defined in terms of $J_{0, z}^{\mu, \gamma, \eta}$ for convenience as follows
8) $U_{0, z}^{\mu, \gamma, \eta}=\frac{\Gamma(2-\gamma) \Gamma(2-\mu+\eta)}{\Gamma(2-\gamma+\eta)} z^{\gamma} J_{0, z}^{\mu, \gamma, \eta} f(z)$ $\left(-\infty<\mu<1 ;-\infty<\gamma<1 ; \eta \in \mathbb{R}^{+}\right)$.
Thus,

$$
U_{0, z}^{\mu, \gamma, \eta} f(z)=z+\sum_{k=2}^{\infty} \frac{(2-\gamma+\eta)_{k-1}(2)_{k-1}}{(2-\gamma)_{k-1}(2-\mu+\eta)_{k-1}} a_{k} z^{k}
$$

Note that

$$
U_{0, z}^{\mu, \gamma, \eta} f(z)= \begin{cases}\frac{\Gamma(2-\gamma) \Gamma(2-\mu+\eta)}{\Gamma(2-\gamma-\eta)} z^{\gamma} J_{0, z}^{\mu, \gamma, \eta} f(z) ; & 0 \leq \mu<1 \tag{1.9}\\ \frac{\Gamma(2-\gamma) \Gamma(2-\mu+\eta)}{\Gamma(2-\gamma+\eta)} z^{\gamma} I_{0, z}^{-\mu, \gamma, \eta} ; & -\infty \leq \mu<0\end{cases}
$$

for fractional differential operator $J_{0, z}^{\mu, \gamma, \eta}$ and fractional integral operator $I_{0, z}^{-\mu, \gamma, \eta}$.
Let us now consider another operator $M_{0, z}^{\mu, \gamma, \eta}$ defined using the operators $U_{0, z}^{\mu, \gamma, \eta}$ and the incomplete beta function $\phi(a, b ; z)$ as follows.

For real numbers $\mu(-\infty<\mu<1), \gamma(-\infty<\gamma<1), \eta \in \mathbb{R}^{+}, a \neq-1,-2, \cdots$, and $c \neq 0,-1,-2, \cdots$ we define the operator $M_{0, z}^{\mu, \gamma, \eta}: S \rightarrow S$ by

$$
\begin{align*}
M_{0, z}^{\mu, \gamma, \eta} f(z) & =\phi(a, b ; z) * U_{0, z}^{\mu, \gamma, \eta} f(z) \tag{1.10}\\
& =z+\sum_{k=2}^{\infty} \frac{(a)_{k-1}(2-\gamma+\eta)_{k-1}(2)_{k-1}}{(c)_{k-1}(2-\gamma)_{k-1}(2-\mu+\eta)_{k-1}} a_{k} z^{k} \\
& =z+\sum_{k=2}^{\infty} h(k) a_{k} z^{k} \tag{1.11}
\end{align*}
$$

for

$$
\begin{equation*}
h(k)=\frac{(a)_{k-1}(2-\gamma+\eta)_{k-1}(2)_{k-1}}{(c)_{k-1}(2-\gamma)_{k-1}(2-\mu+\eta)_{k-1}} \tag{1.12}
\end{equation*}
$$

Notice that,

$$
M_{0, z}^{\mu, \gamma, \eta} f(z)=\left\{\begin{array}{lll}
f(z) & \text { if } \quad a=c=1 ; & \mu=\gamma=0 \\
z f^{\prime}(z) & \text { if } \quad a=c=1 ; \quad \mu=\gamma=1
\end{array}\right.
$$

Consider the subclass $S_{\mu, \gamma, \eta}(\alpha, \beta)$ consisting of functions $f \in S$ and satisfying

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z\left(M_{0, z}^{\mu, \gamma, \eta} f(z)\right)^{\prime}}{M_{0, z}^{\mu, \gamma, \eta} f(z)}-\alpha\right\} \geq \beta\left|\frac{z\left(M_{0, z}^{\mu, \gamma, \eta} f(z)\right)^{\prime}}{M_{0, z}^{\mu, \gamma, \eta} f(z)}-1\right| \tag{1.13}
\end{equation*}
$$

$\left(z \in U,-\infty<\mu<1 ;-\infty<\gamma<1 ; \eta \in \mathbb{R}^{+} ;-1 \leq \alpha<1 ; \beta \geq 0 ; a \neq-1,-2, \cdots ; c \neq\right.$ $0,-1,-2, \cdots)$.

Let $K_{\mu, \gamma, \eta}(\alpha, \beta)=S_{\mu, \gamma, \eta}(\alpha, \beta) \cap T$.
It is also interesting to note that the class $K_{\mu, \gamma, \eta}(\alpha, \beta)$ extend to classes of starlike, convex, β-uniformly starlike, β-uniformly convex and prestarlike function for suitable choice of the parameters $a, c, \mu, \gamma, \eta, \alpha$ and β. For instance;

1. for $a=c=1 ; \mu=\gamma=0$ the class $K_{\mu, \gamma, \eta}(\alpha, \beta)$ reduces to the class of $\beta-S(\alpha)$.
2. For $a=c=1 ; \mu=\gamma=1$ the class reduces to $\beta-K(\alpha)$.
3. For $a=2-2 \alpha, c=1 ; \mu=\gamma=0$ the class reduces to β-pre-starlike functions.

Several other classes studied can be derived from $K_{\mu, \gamma, \eta}(\alpha, \beta)$.

2. COEFFICIENT ESTIMATES

Theorem 2.1. A function $f(z)$ defined by (1.2) is in the class $K_{\mu, \gamma, \eta}(\alpha, \beta)$, if and only if

$$
\begin{equation*}
\sum_{k=2}^{\infty}[k(1+\beta)-(\alpha+\beta)] h(k) a_{k} \leq 1-\alpha \tag{2.1}
\end{equation*}
$$

where $0 \leq \alpha<1 ; \beta \geq 0,-\infty<\mu<1,-\infty<\gamma<1, \eta \in \mathbb{R}^{+}, a \neq-1,-2, \cdots$ and $c \neq 0,-1,-2, \cdots$.

Proof. Assume (1.2) holds, then we show that $f(z) \in K_{\mu, \gamma, \eta}(\alpha, \beta)$. Thus, it is suffices to show that

$$
\beta\left|\frac{z\left(M_{0, z}^{\mu, \gamma, \eta} f(z)\right)^{\prime}}{M_{0, z}^{\mu, \gamma, \eta} f(z)}-1\right|-\operatorname{Re}\left\{\frac{z\left(M_{0, z}^{\mu, \gamma, \eta} f(z)\right)^{\prime}}{M_{0, z}^{\mu, \gamma, \eta} f(z)}-\alpha\right\} \leq 0
$$

that is,

$$
\beta\left|\frac{z\left(M_{0, z}^{\mu, \gamma, \eta} f(z)\right)^{\prime}}{M_{0, z}^{\mu, \gamma, \eta} f(z)}-1\right|-\operatorname{Re}\left\{\frac{z\left(M_{0, z}^{\mu, \gamma, \eta} f(z)\right)^{\prime}}{M_{0, z}^{\mu, \gamma, \eta} f(z)}-1\right\} \leq 1-\alpha
$$

We have

$$
\begin{aligned}
& \beta\left|\frac{z\left(M_{0, z}^{\mu, \gamma, \eta} f(z)\right)^{\prime}}{M_{0, z}^{\mu, \gamma, \eta} f(z)}-1\right|-R e\left\{\frac{z\left(M_{0, z}^{\mu, \gamma, \eta} f(z)\right)^{\prime}}{M_{0, z}^{\mu, \gamma, \eta} f(z)}-1\right\} \\
& \leq(1+\beta)\left|\frac{z\left(M_{0, z}^{\mu, \gamma, \eta} f(z)\right)^{\prime}}{M_{0, z}^{\mu, \gamma, \eta} f(z)}-1\right| \\
& \leq \frac{(1+\beta) \sum_{k=2}^{\infty}(k-1) h(k) a_{k}}{1-\sum_{k=2}^{\infty} h(k) a_{k}}
\end{aligned}
$$

This expression is bounded above by $(1-\alpha)$ if

$$
\begin{equation*}
\sum_{k=2}^{\infty}[k(1+\beta)-(\alpha+\beta)] h(k) a_{k} \leq 1-\alpha \tag{2.2}
\end{equation*}
$$

Conversely, we show that a function $f(z) \in K_{\mu, \gamma, \eta}(\alpha, \beta)$ satisfies inequality (2.1).
Let $f(z) \in K_{\mu, \gamma, \eta}(\alpha, \beta)$ and z be real, then by relation (1.11) and (1.13), we have

$$
\frac{1-\sum_{k=2}^{\infty} k h(k) a_{k} z^{k-1}}{1-\sum_{k=2}^{\infty} h(k) a_{k} z^{k-1}}-\alpha \geq \beta\left|\frac{\sum_{k=2}^{\infty}(k-1) h(k) a_{k} z^{k-1}}{1-\sum_{k=2}^{\infty} h(k) a_{k} z^{k-1}}\right|
$$

Allowing $z \rightarrow 1$ along real axis, we obtain the desired inequality (2.2).
The equality in (2.2) is attained for the extremal function

$$
\begin{equation*}
f(z)=z-\frac{(1-\alpha)}{[k(1+\beta)-(\alpha+\beta)] h(k)} z^{k} \quad(k \geq 2) \tag{2.3}
\end{equation*}
$$

Corollary 2.2. Let a function f defined by (1.2) be in the class $K_{\mu, \gamma, \eta}(\alpha, \beta)$. Then

$$
a_{k} \leq \frac{(1-\alpha)(c)_{k-1}(2-\gamma)_{k-1}(2-\mu+\eta)_{k-1}}{[k(1+\beta)-(\alpha+\beta)](a)_{k-1}(2-\gamma+\eta)_{k-1}(2)_{k-1}}, \quad k \geq 2 .
$$

Next, we give the growth and distortion theorem for the class $K_{\mu, \gamma, \eta}(\alpha, \beta)$.
Theorem 2.3. Let the function $f(z)$ defined by (1.2) be in the class $K_{\mu, \gamma, \eta}(\alpha, \beta)$. Then

$$
\begin{align*}
& \left\|M_{0, z}^{\mu, \gamma, \eta} f(z)\left|-\left|z \| \leq \frac{c(1-\alpha)(2-\gamma)(2-\mu+\eta)}{2 a(\beta-\alpha+2)(2-\gamma+\eta)}\right| z\right|^{2}\right. \tag{2.4}\\
& \|\left(M_{0, z}^{\mu, \gamma, \eta} f(z)\right)^{\prime}|-1| \leq \frac{c(1-\alpha)(2-\gamma)(2-\mu+\eta)}{a(\beta-\alpha+2)(2-\gamma+\eta)}|z| \tag{2.5}
\end{align*}
$$

Note that for $a=c=1 ; \beta=1$, we get the result obtained by G. Murugusundaramoorthy, T. Rosy and M. Darus in [7]. The bounds in (2.4) and (2.5), are attained for the function

$$
f(z)=z-\frac{c(1-\alpha)(2-\gamma)(2-\mu+\eta)}{2 a(\beta-\alpha+2)(2-\gamma+\eta)} z^{2}
$$

3. CHARACTERIZATION PROPERTY

Theorem 3.1. Let $\mu, \gamma, \eta \in \mathbb{R}$ such that $\mu(-\infty<\mu<1), \gamma(-\infty<\gamma<1), \eta \in \mathbb{R}^{+}, a \neq$ $-1,-2, \cdots$ and $c \neq 0,-1,-2, \cdots$. Also let the function $f(z)$ given by (1.2) satisfy

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{[k(1+\beta)-(\alpha+\beta)]}{1-\alpha} h(k) a_{k} \leq \frac{1}{h(2)} \tag{3.1}
\end{equation*}
$$

for $-1 \leq \alpha<1, \beta \geq 0$. Then $M_{0, z}^{\mu, \gamma, \eta} f(z) \in K_{\mu, \gamma, \eta}(\alpha, \beta)$, where $h(k)$ is given by (1.12). Proof. We have from (1.11)

$$
\begin{equation*}
M_{0, z}^{\mu, \gamma, \eta} f(z)=z-\sum_{k=2}^{\infty} h(k) a_{k} z^{k} . \tag{3.2}
\end{equation*}
$$

Under the condition stated in the hypothesis of this theorem, we observe that the function $h(k)$ is a non-increasing function of k for $k \geq 2$, and thus

$$
\begin{equation*}
0<h(k) \leq h(2)=\frac{2 a(2-\gamma+\bar{\eta})}{c(2-\gamma)(2-\mu+\eta)} \tag{3.3}
\end{equation*}
$$

Therefore, (3.1) and (3.3) yields

$$
\sum_{k=2}^{\infty} \frac{k(1+\beta)-(\alpha+\beta)] h(k)}{(1-\alpha)} h(k) a_{k} \leq h(2) \sum_{k=2}^{\infty} \frac{[k(1+\beta)-(\alpha+\beta)]}{(1-\alpha)} h(k) a_{k} \leq 1
$$

Hence by Theorem 1, we conclude that

$$
M_{0, z}^{\mu, \gamma, \eta} f(z) \in K_{\mu, \gamma, \eta}(\alpha, \beta)
$$

Remark. The equality in (3.1) is attained for the function $f(z)$ defined by

$$
\begin{equation*}
f(z)=z-\frac{c^{2}(1-\alpha)(2-\gamma)^{2}(2-\mu+\eta)^{2}}{4 a^{2}(\beta-\alpha+2)(2-\gamma+\eta)^{2}} z^{2} \tag{3.5}
\end{equation*}
$$

4. RESULTS ON MODIFIED HADAMARD PRODUCT

Theorem 4.1. For functions $f(z)$ and $g(z)$ defined by (1.2), let $f(z) \in K_{\mu, \gamma, \eta}(\alpha, \beta)$ and $g(z) \in K_{\mu, \gamma, \eta}(\xi, \beta)$. Then

$$
(f * g)(z) \in K_{\mu, \gamma, \eta}(\delta, \beta)
$$

where

$$
\begin{equation*}
\delta=1-\frac{(1+\beta)(1-\alpha)(1-\xi)}{(\beta-\alpha+2)(\beta-\xi+2) h(2)-(1-\alpha)(1-\xi)} \tag{4.1}
\end{equation*}
$$

for $h(2)$ defined by (3.3).
The result is sharp for

$$
f(z)=z-\frac{(1-\alpha)}{(\beta-\alpha+2) h(2)} z^{2}
$$

and

$$
g(z)=z-\frac{(1-\alpha)}{(\beta-\xi+2) h(2)} z^{2}
$$

Proof. In view of Theorem 2.1 it is sufficient to show that

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{[k(1+\beta)-(\delta+\beta)] h(k)}{1-\delta} a_{k} b_{k} \leq 1 \tag{4.2}
\end{equation*}
$$

for δ defined by (4.1).
Now, $f(z)$ and $g(z)$ belong to $K_{\mu, \gamma, \eta}(\alpha, \beta)$ and $K_{\mu, \gamma, \eta}(\xi, \beta)$, respectively and so, we have

$$
\begin{align*}
& \sum_{k=2}^{\infty} \frac{[k(1+\beta)-(\alpha+\beta)] h(k)}{1-\alpha} a_{k} \leq 1 \tag{4.3}\\
& \sum_{k=2}^{\infty} \frac{[k(1+\beta)-(\xi+\beta)] h(k)}{1-\xi} b_{k} \leq 1 \tag{4.4}
\end{align*}
$$

By applying Cauchy-Schwarz inequality to (4.3) and (4.4), we get

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{\sqrt{[k(1+\beta)-(\alpha+\beta)][k(1+\beta)-(\xi+\beta)]}}{\sqrt{(1-\alpha)(1-\xi)}} h(k) \sqrt{a_{k} b_{k}} \leq 1 \tag{4.5}
\end{equation*}
$$

In view of (4.2) it suffices to show that

$$
\begin{aligned}
& \sum_{k=2}^{\infty} \frac{[k(1+\beta)-(\delta+\beta)] h(k)}{1-\delta} a_{k} b_{k} \\
& \leq \sum_{k=2}^{\infty} \frac{\sqrt{[k(1+\beta)-(\alpha+\beta)][(k(1+\beta)-(\xi+\beta)]}}{\sqrt{(1-\alpha)(1-\xi)}} h(k) \sqrt{a_{k} b_{k}}
\end{aligned}
$$

or equivalently
(4.6) $\sqrt{a_{k} b_{k}} \leq \frac{\sqrt{[k(1+\beta)-(\alpha+\beta)][k(1+\beta)-(\xi+\beta)]}}{\sqrt{(1-\alpha)(1-\xi)}} \frac{1-\delta}{[k(1+\beta)-(\delta+\beta)]}$ for $k \geq 2$.

In view of (4.5) and (4.6) it is sufficient to show that

$$
\begin{aligned}
& \frac{\sqrt{(1-\alpha)(1-\xi)}}{h(k) \sqrt{[k(1+\beta)-(\alpha+\beta)[k(1+\beta)-(\xi+\beta)]}} \\
& \leq \frac{\sqrt{[k(1+\beta)-(\alpha+\beta)][k(1+\beta)-(\xi+\beta)]}(1-\delta)}{\sqrt{(1-\alpha)(1-\xi)[k(1+\beta)-(\delta+\beta)]}} \text { for } k \geq 2
\end{aligned}
$$

which simplifies to

$$
\begin{equation*}
\delta \leq 1-\frac{(1+\beta)(k-1)(1-\alpha)(1-\xi)}{[k(1+\beta)-(\alpha+\beta)][k(1+\beta)-(\xi+\beta)] h(k)-(1-\alpha)(1-\xi)} \tag{4.7}
\end{equation*}
$$

where

$$
h(k)=\frac{(a)_{k-1}(2-\gamma+\eta)_{k-1}(2)_{k-1}}{(c)_{k-1}(2-\gamma)_{k-1}(2-\mu+\eta)_{k-1}} \text { for } k \geq 2
$$

Notice that $h(k)$ is a decreasing function of $k(k \geq 2)$, and thus δ can be chosen as below.

$$
\delta=1-\frac{(1+\beta)(1-\alpha)(1-\xi)}{(\beta-\alpha+2)(\beta-\xi+2) h(2)-(1-\alpha)(1-\xi)}
$$

for $h(2)$ defined by (3.3). This completes the proof.
Theorem 4.2. Let the function $f(z)$ and $g(z)$ be defined by (2.1) be in the class $K_{\mu, \gamma, \eta}(\alpha, \beta)$. Then $(f * g)(z) \in K_{\mu, \gamma, \eta}(\delta, \beta)$, where

$$
\delta=1-\frac{(1+\beta)(1-\alpha)^{2}}{(\beta-\alpha+2)^{2} h(2)-(1-\alpha)^{2}}
$$

for $h(2)$ given by (3.3).
Proof. Substituting $\alpha=\xi$ in the Theorem 4.1 above, the result follows.
Theorem 4.3. Let the function $f(z)$ defined by (1.2) be in the class $K_{\mu, \gamma, \eta}(\alpha, \beta)$.
Consider

$$
g(z)=z-\sum_{k=2}^{\infty} b_{k} z^{k} \quad \text { for } \quad\left|b_{k}\right| \leq 1
$$

Then $(f * g)(z) \in K_{\mu, \gamma, \eta}(\alpha, \beta)$.
Proof. Notice that

$$
\begin{aligned}
& \sum_{k=2}^{\infty}[k(1+\beta)-(\alpha+\beta)] h(k)\left|a_{k} b_{k}\right| \\
& =\sum_{k=2}^{\infty}[k(1+\beta)-(\alpha+\beta)] h(k) a_{k}\left|b_{k}\right| \\
& \leq \sum_{k=2}^{\infty}[k(1+\beta)-(\alpha+\beta)] h(k) a_{k} \\
& \leq 1-\alpha \quad \text { using Theorem 2.1. }
\end{aligned}
$$

Hence $(f * g)(z) \in K_{\mu, \gamma, \eta}(\alpha, \beta)$.
Corollary 4.4. Let the function $f(z)$ defined by (1.2) be in the class $K_{\mu, \gamma, \eta}(\alpha, \beta)$. Also let $g(z)=z-\sum_{k=2}^{\infty} b_{k} z^{k}$ for $0 \leq b_{k} \leq 1$. Then $(f * g)(z) \in K_{\mu, \gamma, \eta}(\alpha, \beta)$.

Next we prove the following inclusion property for functions in the class $K_{\mu, \gamma, \eta}(\alpha, \beta)$.
Theorem 4.5. Let the functions $f(z)$ and $g(z)$ defined by (2.1) be in the class $K_{\mu, \gamma, \eta}(\alpha, \beta)$.
Then the function $h(z)$ defined by

$$
h(z)=z-\sum_{k=2}^{\infty}\left(a_{k}^{2}+b_{k}^{2}\right) z^{k}
$$

is in the class $K_{\mu, \gamma, \eta}(\theta, \beta)$ where

$$
\theta=1-\frac{2(1+\beta)(1-\alpha)^{2}}{(\beta-\alpha+2)^{2} h(2)-2(1-\alpha)^{2}}
$$

with $h(2)$ given by (3.3).
Proof. In view of Theorem 2.1 it is sufficient to show that

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{[k(1+\beta)-(\theta+\beta)] h(k)}{1-\theta}\left(a_{k}^{2}+b_{k}^{2}\right) \leq 1 \tag{4.8}
\end{equation*}
$$

Notice that, $f(z)$ and $g(z)$ belong to $K_{\mu, \gamma, \eta}(\alpha, \beta)$ and so

$$
\begin{align*}
& \sum_{k=2}^{\infty}\left[\frac{[k(1+\beta)-(\alpha+\beta)] h(k)}{(1-\alpha)}\right]^{2} a_{k}^{2} \leq\left[\sum_{k=2}^{\infty} \frac{[k(1+\beta)-(\alpha+\beta)] h(k)}{(1-\alpha)} a_{k}\right]^{2} \leq 1 \tag{4.9}\\
& \sum_{k=2}^{\infty}\left[\frac{[k(1+\beta)-(\alpha+\beta)] h(k)}{(1-\alpha)}\right]^{2} b_{k}^{2} \leq\left[\sum_{k=2}^{\infty} \frac{[k(1+\beta)-(\alpha+\beta)] h(k)}{(1-\alpha)} b_{k}\right]^{2} \leq 1 \tag{4.10}
\end{align*}
$$

Adding (4.9) and (4.10), we get

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{1}{2}\left[\frac{[k(1+\beta)-(\alpha+\beta)] h(k)}{(1-\alpha)}\right]^{2}\left(a_{k}^{2}+b_{k}^{2}\right) \leq 1 \tag{4.11}
\end{equation*}
$$

Thus (4.8) will hold if

$$
\frac{[k(1+\beta)-(\theta+\beta)]}{1-\theta} \leq \frac{1}{2} \frac{h(k)[k(1+\beta)-(\alpha+\beta)]^{2}}{(1-\alpha)^{2}} .
$$

That is, if

$$
\begin{equation*}
\theta \leq 1-\frac{2(1+\beta)(k-1)(1-\alpha)^{2}}{[k(1+\beta)-(\alpha+\beta)]^{2} h(k)-2(1-\alpha)^{2}} \tag{4.12}
\end{equation*}
$$

Notice that, θ can be further improved by using the fact that $h(k) \leq h(2)$ for $k \geq 2$. Therefore,

$$
\theta=1-\frac{2(1+\beta)(1-\alpha)^{2}}{(\beta-\alpha+2)^{2} h(2)-2(1-\alpha)^{2}}
$$

where $h(2)$ is given by (3.3).

5. INTEGRAL TRANSFORM OF THE CLASS $K_{\mu, \gamma, \eta}(\alpha, \beta)$

For $f(z) \in K_{\mu, \gamma, \eta}(\alpha, \beta)$ we define the integral transform

$$
L_{\lambda}(f)(z)=\int_{0}^{1} \frac{\lambda(t) f(t z)}{t} d t
$$

where $\lambda(t)$ is real valued, non-negative weight function normalized such that $\int_{0}^{1} \lambda(t) d t=1$. Note that, $\lambda(t)$ have several special interesting definitions. For instance, $\lambda(t)=(1+c) t^{c}, c>-1$, for which L_{λ} is known as the Bernardi operator. For

$$
\begin{equation*}
\lambda(t)=\frac{2^{\delta}}{\Gamma(\delta)} t\left(\log \frac{1}{t}\right)^{\delta-1}, \quad \delta \geq 0 \tag{5.1}
\end{equation*}
$$

we get the integral operator introduced by Jung, Kim and Srivastava [8].
Let us consider the function

$$
\begin{equation*}
\lambda(t)=\frac{(c+1)^{\delta}}{\Gamma(\delta)} t^{c}\left(\log \frac{1}{t}\right)^{\delta-1}, \quad c>-1, \quad \delta \geq 0 \tag{5.2}
\end{equation*}
$$

Notice that for $c=1$ we get the integral operator introduced by Jung, Kim and Srivastava.

We next show that the class is closed under $L_{\lambda}(f)$ for $\lambda(t)$ given by (5.2).
Theorem 5.1. Let $f(z) \in K_{\mu, \gamma, \eta}(\alpha, \beta)$. Then $L_{\lambda}(f)(z) \in K_{\mu, \gamma, \eta}(\alpha, \beta)$.
Proof. By using the definition of $L_{\lambda}(f)$, we have

$$
\begin{align*}
L_{\lambda}(f) & =\frac{(c+1)^{\delta}}{\Gamma(\delta)} \int_{0}^{1} \frac{t^{c}\left(\log \frac{1}{t}\right)^{\delta-1} f(t z)}{t} d t \tag{5.3}\\
& =\frac{(c+1)^{\delta}}{\Gamma(\delta)} \int_{0}^{1}\left(\log \frac{1}{t}\right)^{\delta-1} t^{c}\left(z-\sum_{k=2}^{\infty} a_{k} t^{k-1} z^{k}\right) d t .
\end{align*}
$$

Simplifying by using the definition of gamma function, we get

$$
\begin{equation*}
L_{\lambda}(f)=z-\sum_{k=2}^{\infty}\left(\frac{c+1}{c+k}\right)^{\delta} a_{k} z^{k} \tag{5.4}
\end{equation*}
$$

Now $L_{\lambda}(f) \in K_{\mu, \gamma, \eta}(\alpha, \beta)$ if

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{[k(1+\beta)-(\alpha+\beta)] h(k)}{(1-\alpha)}\left(\frac{c+1}{c+k}\right)^{\delta} a_{k} \leq 1 \tag{5.5}
\end{equation*}
$$

Also by Theorem 2.1 we have $f \in K_{\mu, \gamma, \eta}(\alpha, \beta)$ if and only if

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{[k(1+\beta)-(\alpha+\beta)] h(k)}{(1-\alpha)} a_{k} \leq 1 \tag{5.6}
\end{equation*}
$$

Thus, in view of (5.5) and (5.6) and the fact that $\left(\frac{c+1}{c+k}\right)<1$ for $k \geq 2,(5.5)$ holds true. Therefore, $L_{\lambda}(f) \in K_{\mu, \gamma, \eta}(\alpha, \beta)$ and the proof is complete.

6. EXTREME POINTS OF $K_{\mu, \gamma, \eta}(\alpha, \beta)$

Theorem 6.1. Let

$$
\begin{equation*}
f_{1}(z)=z \tag{6.1}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{k}(z)=z-\frac{(1-\alpha)}{[k(1+\beta)-(\alpha+\beta)] h(k)} z^{k}, \quad(k \geq 2) . \tag{6.2}
\end{equation*}
$$

Then $f(z) \in K_{\mu, \gamma, \eta}(\alpha, \beta)$ if and only if $f(z)$ can be expressed in the form

$$
f(z)=\sum_{k=1}^{\infty} \lambda_{k} f_{k}(z)
$$

where $\lambda_{k} \geq 0$ and $\sum_{k=1}^{\infty} \lambda_{k}=1$.
Proof. Let $f(z)$ be expressible in the form

$$
f(z)=\sum_{k=1}^{\infty} \lambda_{k} f_{k}(z)
$$

Then

$$
f(z)=z-\sum_{k=2}^{\infty} \frac{(1-\alpha)}{[k(1+\beta)-(\alpha+\beta)] h(k)} \lambda_{k} z^{k}
$$

Now,

$$
\sum_{k=2}^{\infty} \frac{(1-\alpha) \lambda_{k}}{[k(1+\beta)-(\alpha+\beta)]} \frac{[k(1+\beta)-(\alpha+\beta)] h(k)}{(1-\alpha)}=\sum_{k=2}^{\infty} \lambda_{k}=1-\lambda_{1} \leq 1
$$

Therefore, $f(z) \in K_{\mu, \gamma, \eta}(\alpha, \beta)$.

Conversely, suppose that $f(z) \in K_{\mu, \gamma, \eta}(\alpha, \beta)$. Thus,

$$
a_{k} \leq \frac{(1-\alpha)}{[k(1+\beta)-(\alpha+\beta)] h(k)} \quad(k \geq 2)
$$

Setting

$$
\lambda_{k}=\frac{[k(1+\beta)-(\alpha+\beta)] h(k)}{(1-\alpha)} a_{k} \quad(k \geq 2)
$$

and $\lambda_{1}=1-\sum_{k=2}^{\infty} \lambda_{k}$, we get

$$
f(z)=\sum_{k=1}^{\infty} \lambda_{k} f_{k}(z)
$$

This completes the proof.

7. CLOSURE THEOREM

Theorem 7.1. Let the function $f_{j}(z)$ defined by (2.1) be in the class $K_{\mu, \gamma, \eta}(\alpha, \beta)$. Then the function $h(z)$ defined by

$$
h(z)=z-\sum_{k=2}^{\infty} e_{k} z^{k} \text { belongs to } K_{\mu, \gamma, \eta}(\alpha, \beta)
$$

where $f_{j}(z)=z-\sum_{k=2}^{\infty} a_{k, j} z^{k}, \quad j=1,2, \cdots, \ell$, and

$$
e_{k}=\frac{1}{\ell} \sum_{j=1}^{\ell} a_{k, j} \quad\left(a_{k, j} \geq 0\right)
$$

Proof. Since $f_{j}(z) \in K_{\mu, \gamma, \eta}(\alpha, \beta)$, in view of Theorem 2.1, we have

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{[k(1+\beta)-(\alpha+\beta)] h(k)}{(1-\alpha)} a_{k, j} \leq 1 \tag{7.1}
\end{equation*}
$$

Now,

$$
\begin{aligned}
\frac{1}{\ell} \sum_{j=1}^{\ell} f_{j}(z) & =\frac{1}{\ell} \sum_{j=1}^{\ell}\left(z-\sum_{k=2}^{\infty} a_{k, j} z^{k}\right) \\
& =z-\sum_{k=2}^{\infty} e_{k} z^{k}
\end{aligned}
$$

where $e_{k}=\frac{1}{\ell} \sum_{j=1}^{\ell} a_{k, j}$.

Notice that,

$$
\sum_{k=2}^{\infty} \frac{[k(1+\beta)-(\alpha+\beta)] h(k)}{(1-\alpha)} \frac{1}{\ell} \sum_{j=1}^{\ell} a_{k, j} \leq 1, \quad \text { using (7.1). }
$$

Thus, $h(z) \in K_{\mu, \gamma, \eta}(\alpha, \beta)$.

8. RADIUS OF STARLIKENESS, CONVEXITY AND CLOSE-TO-CONVEXITY

Theorem 8.1. Let $f(z) \in K_{\mu, \gamma, \eta}(\alpha, \beta)$. Then $M_{0, z}^{\mu, \gamma, \eta} f(z)$ is starlike of order $s, 0 \leq s<$ 1 in $|z|<R_{1}$ where

$$
\begin{equation*}
R_{1}=\inf _{k}\left[\frac{(1-s)[k(1+\beta)-(\alpha+\beta)]}{(1-\alpha)(k-s)}\right]^{\frac{1}{(k-1)}} \tag{8.1}
\end{equation*}
$$

Proof. $M_{0, z}^{\mu, \gamma, \eta} f(z)$ is said to be starlike of order $s, 0 \leq s<1$, if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z\left(M_{0, z}^{\mu, \gamma, \eta} f(z)\right)^{\prime}}{M_{0, z}^{\mu, \gamma, \eta} f(z)}\right\}>s \tag{8.2}
\end{equation*}
$$

or equivalently

$$
\left|\frac{z\left(M_{0, z}^{\mu, \gamma, \eta} f(z)\right)^{\prime}}{M_{0, z}^{\mu, \gamma, \eta} f(z)}-1\right|<1-s .
$$

With fairly straight forward calculations, we get

$$
|z|^{k-1} \leq \frac{(1-s)[k(1+\beta)-(\alpha+\beta)]}{(1-\alpha)(k-s)}, \quad k \geq 2 .
$$

Setting $R_{1}=|z|$, the result follows.
Next, we state the radius of convexity using the fact that f is convex, if and only if $z f^{\prime}$ is starlike. We omit the proof of the following theorems as the results can be easily derived.
Theorem 8.2. Let $f(z) \in K_{\mu, \gamma, \eta}(\alpha, \beta)$. Then $M_{0, z}^{\mu, \gamma, \eta} f(z)$ is convex of order $c, 0 \leq c<1$ in $|z|<R_{2}$ where

$$
R_{2}=\inf _{k}\left[\frac{(1-c)[k(1+\beta)-(\alpha+\beta)]}{k(1-\alpha)(k-c)}\right]^{\frac{1}{(k-1)}} .
$$

Theorem 8.3. Let $f(z) \in K_{\mu, \gamma, \eta}(\alpha, \beta)$. Then $M_{0, z}^{\mu, \gamma, \eta} f(z)$ is close-to-convex of order $r, 0 \leq r<1$ in $|z|<R_{3}$ where

$$
R_{3}=\inf _{k}\left[\frac{(1-r)[k(1+\beta)-(\alpha+\beta)]}{k(1-\alpha)}\right]^{\frac{1}{(k-1)}} .
$$

Thoerem 8.4. Let $f(z) \in K_{\mu, \gamma, \eta}(\alpha, \beta)$. Then $L_{\lambda}(f)$ is starlike of order $p, 0 \leq p<1$ in $|z|<R_{4}$ where

$$
R_{4}=\inf _{k}\left[\frac{(1-p)[k(1+\beta)-(\alpha+\beta)] h(k)(c+k)^{\delta}}{(1-\alpha)(k-p)(c+1)^{\delta}}\right]^{\frac{1}{(k-1)}} .
$$

Theorem 8.5. Let $f(z) \in K_{\mu, \gamma, \eta}(\alpha, \beta)$. Then $L_{\lambda}(f)$ is convex of order $q, 0 \leq q<1$ in $|z|<R_{5}$ where

$$
R_{5}=\inf _{k}\left[\frac{(1-q)[k(1+\beta)-(\alpha+\beta)] h(k)(c+k)^{\delta}}{k(1-\alpha)(k-q)(c+1)^{\delta}}\right]^{\frac{1}{(k-1)}}
$$

Theorem 8.6. Let $f(z) \in K_{\mu, \gamma, \eta}(\alpha, \beta)$. Then $L_{\lambda}(f)$ is close-to-convex of order $m, 0 \leq$ $m<1$ in $|z|<R_{6}$ where

$$
R_{6}=\inf _{k}\left[\frac{(1-m)[k(1+\beta)-(\alpha+\beta)] h(k)(c+k)^{\delta}}{k(1-\alpha)(c+1)^{\delta}}\right]^{\frac{1}{(k-1)}}
$$

REFERENCES

[1] B. C. Carlson and D. B. Shaffer, Starlike and pre-starlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984), 737-745.
[2] F. Ghanim and M. Darus, On new subclass of analytic p-valent function with negative coefficient for operator on Hilbert space, International Mathematical Forum, 3 (2008) No. 2, 69-77.
[3] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math., 56 (1991), 87-92.
[4] I. B. Jung and Y. C. Kim, The hardly space of analytic functions associated with certain one-parameter families of integral transform, J. Math. Anal. Appl., 179 (1993), 138-147.
[5] Y. C. Kim and F. Ronning, Integral transform of certain subclasses of analytic functions, J. Math. Anal. Appl., 258 (2001), 466-489.
[6] D. Minda and W. Ma, Uniformly convex functions, Ann. Polon. Math., 57 (1992), 165-175.
[7] R. K. Raina and M. Saigo, A note on fractional calculus operators involving Fox'H-function on space $F_{p, \mu}$, Recent Advances in Fractional Calculus, Global Publishing Co. Sauk Rapids, (1993), 219-229.

