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1. INTRODUCTION

Let S denote the class of functions of the form

(1.1) f(z) = z +
∞∑
k=2

akz
k

which are analytic and univalent in the unit disc U = {z : |z| < 1}. Let U∗ = {z : 0 <

|z| < 1} be the punctured unit disc. Also denote by T the class of functions of the form

(1.2) f(z) = z −
∞∑
k=2

akz
k (ak ≥ 0, z ∈ U)

which are analytic and univalent in U .

For g(z) = z −
∞∑
k=2

bkz
k the modified Hadamard product of f(z) and g(z) is defined

by

(1.3) (f ∗ g)(z) = z −
∞∑
k=2

akbkz
k.

A function f(z) ∈ S is said to be β-uniformly starlike of order α, (−1 ≤ α < 1), β ≥ 0

and all (z ∈ U), denoted by β − S(α), if and only if

(1.4) Re

{
zf ′(z)

f(z)
− α

}
≥ β

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ .
A function f(z) ∈ S is said to be β-uniformly convex of order α, (−1 ≤ α < 1), β ≥ 0

and all (z ∈ U), denoted by β −K(α), if and only if

(1.5) Re

{
1 +

zf ′′(z)

f ′(z)
− α

}
≥ β

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣.
Notice that, 0− S(α) = S(α) and 0−K(α) = K(α), where S(α) and K(α) are respec-

tively the popular classes of starlike and convex functions of order α (0 ≤ α < 1). The

classes β−S(α) and β−K(α) were introduced and studied by Goodman [3]and Minda

and Ma [6].

Clearly f ∈ β−K(α) if and only if zf ′ ∈ β−S(α). Let φ(a, c; z) be the incomplete

beta function defined by

(1.6) φ(a, c; z) = z +

∞∑
k=2

(a)k−1

(c)k−1
zk (a 6= −1,−2,−3, · · · and c 6= 0,−1,−2,−3, · · · )
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where (a)k is the Pochhammer symbol defined by

(a)k =
Γ(a+ k)

Γ(a)
=

{
1 : k = 0
a(a+ 1)(a+ 2) · · · (a+ k − 1) : k ∈ IN

We note that L(a, c)f(z) = φ(a, b; z) ∗ f(z), for f ∈ S is the Carlson-Shaffer operator

[1]. The fractional derivative operator Jµ,γ,η0,z of a function f(z) is defined as follows.

For m− 1 ≤ µ < m;m ∈ IN and γ, η ∈ IR

(1.7) Jµ,γ,η0,z f(z) =
dm

dzm

{
zµ−γ

Γ(m− µ)

∫ z

0
(z − t)m−µ−1

2F1(γ − µ,m− η;m− µ; 1− t

z
)f(t)dt

}
where the function f(z) is analytic in a simply connected region of the z-plane containing

the origin with the order

f(z) = 0(|z|r), z → 0

where r > max{0, γ−η}−1 and the multiplicity of (z−t)m−µ−1 is removed by requiring

log(z − t) to be real when (z − t) > 0 and is well defined in the unit disc.

Notice that Jµ,µ,η0,z f(z) = Dµ
0,zf(z) which is the well known Riemann-Liouville frac-

tional derivative operator [8].

The fractional operator Uµ,γ,η0,z is defined in terms of Jµ,γ,η0,z for convenience as follows

(1.8) Uµ,γ,η0,z =
Γ(2− γ)Γ(2− µ+ η)

Γ(2− γ + η)
zγJµ,γ,η0,z f(z)

(−∞ < µ < 1;−∞ < γ < 1; η ∈ IR+).

Thus,

Uµ,γ,η0,z f(z) = z +
∞∑
k=2

(2− γ + η)k−1(2)k−1

(2− γ)k−1(2− µ+ η)k−1
akz

k.

Note that

(1.9) Uµ,γ,η0,z f(z) =

{
Γ(2−γ)Γ(2−µ+η)

Γ(2−γ+η) zγJµ,γ,η0,z f(z); 0 ≤ µ < 1
Γ(2−γ)Γ(2−µ+η)

Γ(2−γ+η) zγI−µ,γ,η0,z ; −∞ ≤ µ < 0

for fractional differential operator Jµ,γ,η0,z and fractional integral operator I−µ,γ,η0,z .

Let us now consider another operator Mµ,γ,η
0,z defined using the operators Uµ,γ,η0,z and

the incomplete beta function φ(a, b; z) as follows.

For real numbers µ(−∞ < µ < 1), γ(−∞ < γ < 1), η ∈ IR+, a 6= −1,−2, · · · , and

c 6= 0,−1,−2, · · · we define the operator Mµ,γ,η
0,z : S → S by
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(1.10) Mµ,γ,η
0,z f(z) = φ(a, b; z) ∗ Uµ,γ,η0,z f(z)

= z +
∞∑
k=2

(a)k−1(2− γ + η)k−1(2)k−1

(c)k−1(2− γ)k−1(2− µ+ η)k−1
akz

k

(1.11) = z +
∞∑
k=2

h(k)akz
k

for

(1.12) h(k) =
(a)k−1(2− γ + η)k−1(2)k−1

(c)k−1(2− γ)k−1(2− µ+ η)k−1

Notice that,

Mµ,γ,η
0,z f(z) =

{
f(z) if a = c = 1; µ = γ = 0
zf ′(z) if a = c = 1; µ = γ = 1

Consider the subclass Sµ,γ,η(α, β) consisting of functions f ∈ S and satisfying

(1.13) Re

{
z(Mµ,γ,η

0,z f(z))′

Mµ,γ,η
0,z f(z)

− α

}
≥ β

∣∣∣∣∣z(M
µ,γ,η
0,z f(z))′

Mµ,γ,η
0,z f(z)

− 1

∣∣∣∣∣
(z ∈ U,−∞ < µ < 1;−∞ < γ < 1; η ∈ IR+;−1 ≤ α < 1;β ≥ 0; a 6= −1,−2, · · · ; c 6=
0,−1,−2, · · · ).

Let Kµ,γ,η(α, β) = Sµ,γ,η(α, β) ∩ T.
It is also interesting to note that the class Kµ,γ,η(α, β) extend to classes of starlike,

convex, β-uniformly starlike, β-uniformly convex and prestarlike function for suitable

choice of the parameters a, c, µ, γ, η, α and β. For instance;

1. for a = c = 1;µ = γ = 0 the class Kµ,γ,η(α, β) reduces to the class of β − S(α).

2. For a = c = 1;µ = γ = 1 the class reduces to β −K(α).

3. For a = 2− 2α, c = 1;µ = γ = 0 the class reduces to β-pre-starlike functions.

Several other classes studied can be derived from Kµ,γ,η(α, β).

2. COEFFICIENT ESTIMATES

Theorem 2.1. A function f(z) defined by (1.2) is in the class Kµ,γ,η(α, β), if and only

if
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(2.1)
∞∑
k=2

[k(1 + β)− (α+ β)]h(k)ak ≤ 1− α

where 0 ≤ α < 1;β ≥ 0,−∞ < µ < 1,−∞ < γ < 1, η ∈ IR+, a 6= −1,−2, · · · and

c 6= 0,−1,−2, · · · .

Proof. Assume (1.2) holds, then we show that f(z) ∈ Kµ,γ,η(α, β). Thus, it is suffices

to show that

β

∣∣∣∣∣z(M
µ,γ,η
0,z f(z))′

Mµ,γ,η
0,z f(z)

− 1

∣∣∣∣∣−Re
{
z(Mµ,γ,η

0,z f(z))′

Mµ,γ,η
0,z f(z)

− α

}
≤ 0

that is,

β

∣∣∣∣∣z(M
µ,γ,η
0,z f(z))′

Mµ,γ,η
0,z f(z)

− 1

∣∣∣∣∣−Re
{
z(Mµ,γ,η

0,z f(z))′

Mµ,γ,η
0,z f(z)

− 1

}
≤ 1− α.

We have

β

∣∣∣∣∣z(M
µ,γ,η
0,z f(z))′

Mµ,γ,η
0,z f(z)

− 1

∣∣∣∣∣−Re
{
z(Mµ,γ,η

0,z f(z))′

Mµ,γ,η
0,z f(z)

− 1

}

≤ (1 + β)

∣∣∣∣∣z(M
µ,γ,η
0,z f(z))′

Mµ,γ,η
0,z f(z)

− 1

∣∣∣∣∣
≤

(1 + β)
∞∑
k=2

(k − 1)h(k)ak

1−
∞∑
k=2

h(k)ak

.

This expression is bounded above by (1− α) if

(2.2)

∞∑
k=2

[k(1 + β)− (α+ β)]h(k)ak ≤ 1− α

Conversely, we show that a function f(z) ∈ Kµ,γ,η(α, β) satisfies inequality (2.1).

Let f(z) ∈ Kµ,γ,η(α, β) and z be real, then by relation (1.11) and (1.13), we have

1−
∞∑
k=2

kh(k)akz
k−1

1−
∞∑
k=2

h(k)akzk−1

− α ≥ β

∣∣∣∣∣∣∣∣
∞∑
k=2

(k − 1)h(k)akz
k−1

1−
∞∑
k=2

h(k)akzk−1

∣∣∣∣∣∣∣∣ .
Allowing z → 1 along real axis, we obtain the desired inequality (2.2).

The equality in (2.2) is attained for the extremal function

(2.3) f(z) = z − (1− α)

[k(1 + β)− (α+ β)]h(k)
zk (k ≥ 2). �
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Corollary 2.2. Let a function f defined by (1.2) be in the class Kµ,γ,η(α, β). Then

ak ≤
(1− α)(c)k−1(2− γ)k−1(2− µ+ η)k−1

[k(1 + β)− (α+ β)](a)k−1(2− γ + η)k−1(2)k−1
, k ≥ 2.

Next, we give the growth and distortion theorem for the class Kµ,γ,η(α, β).

Theorem 2.3. Let the function f(z) defined by (1.2) be in the class Kµ,γ,η(α, β). Then

(2.4) ||Mµ,γ,η
0,z f(z)| − |z|| ≤ c(1− α)(2− γ)(2− µ+ η)

2a(β − α+ 2)(2− γ + η)
|z|2

(2.5) ||(Mµ,γ,η
0,z f(z))′| − 1| ≤ c(1− α)(2− γ)(2− µ+ η)

a(β − α+ 2)(2− γ + η)
|z|

Note that for a = c = 1;β = 1, we get the result obtained by G. Murugusundaramoorthy,

T. Rosy and M. Darus in [7]. The bounds in (2.4) and (2.5), are attained for the function

f(z) = z − c(1− α)(2− γ)(2− µ+ η)

2a(β − α+ 2)(2− γ + η)
z2

3. CHARACTERIZATION PROPERTY

Theorem 3.1. Let µ, γ, η ∈ IR such that µ(−∞ < µ < 1), γ(−∞ < γ < 1), η ∈ IR+, a 6=
−1,−2, · · · and c 6= 0,−1,−2, · · · . Also let the function f(z) given by (1.2) satisfy

(3.1)

∞∑
k=2

[k(1 + β)− (α+ β)]

1− α
h(k)ak ≤

1

h(2)

for −1 ≤ α < 1, β ≥ 0. Then Mµ,γ,η
0,z f(z) ∈ Kµ,γ,η(α, β), where h(k) is given by (1.12).

Proof. We have from (1.11)

(3.2) Mµ,γ,η
0,z f(z) = z −

∞∑
k=2

h(k)akz
k.

Under the condition stated in the hypothesis of this theorem, we observe that the

function h(k) is a non-increasing function of k for k ≥ 2, and thus

(3.3) 0 < h(k) ≤ h(2) =
2a(2− γ + η)

c(2− γ)(2− µ+ η)
.

Therefore, (3.1) and (3.3) yields
∞∑
k=2

k(1 + β)− (α+ β)]h(k)

(1− α)
h(k)ak ≤ h(2)

∞∑
k=2

[k(1 + β)− (α+ β)]

(1− α)
h(k)ak ≤ 1.

Hence by Theorem 1, we conclude that

Mµ,γ,η
0,z f(z) ∈ Kµ,γ,η(α, β).

�
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Remark. The equality in (3.1) is attained for the function f(z) defined by

(3.5) f(z) = z − c2(1− α)(2− γ)2(2− µ+ η)2

4a2(β − α+ 2)(2− γ + η)2
z2.

4. RESULTS ON MODIFIED HADAMARD PRODUCT

Theorem 4.1. For functions f(z) and g(z) defined by (1.2), let f(z) ∈ Kµ,γ,η(α, β)

and g(z) ∈ Kµ,γ,η(ξ, β). Then

(f ∗ g)(z) ∈ Kµ,γ,η(δ, β)

where

(4.1) δ = 1− (1 + β)(1− α)(1− ξ)
(β − α+ 2)(β − ξ + 2)h(2)− (1− α)(1− ξ)

for h(2) defined by (3.3).

The result is sharp for

f(z) = z − (1− α)

(β − α+ 2)h(2)
z2

and

g(z) = z − (1− α)

(β − ξ + 2)h(2)
z2

Proof. In view of Theorem 2.1 it is sufficient to show that

(4.2)
∞∑
k=2

[k(1 + β)− (δ + β)]h(k)

1− δ
akbk ≤ 1

for δ defined by (4.1).

Now, f(z) and g(z) belong to Kµ,γ,η(α, β) and Kµ,γ,η(ξ, β), respectively and so, we

have

(4.3)

∞∑
k=2

[k(1 + β)− (α+ β)]h(k)

1− α
ak ≤ 1

(4.4)

∞∑
k=2

[k(1 + β)− (ξ + β)]h(k)

1− ξ
bk ≤ 1

By applying Cauchy-Schwarz inequality to (4.3) and (4.4), we get

(4.5)

∞∑
k=2

√
[k(1 + β)− (α+ β)][k(1 + β)− (ξ + β)]√

(1− α)(1− ξ)
h(k)

√
akbk ≤ 1.
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In view of (4.2) it suffices to show that

∞∑
k=2

[k(1 + β)− (δ + β)]h(k)

1− δ
akbk

≤
∞∑
k=2

√
[k(1 + β)− (α+ β)][(k(1 + β)− (ξ + β)]√

(1− α)(1− ξ)
h(k)

√
akbk

or equivalently

(4.6)
√
akbk ≤

√
[k(1 + β)− (α+ β)][k(1 + β)− (ξ + β)]√

(1− α)(1− ξ)
1− δ

[k(1 + β)− (δ + β)]
for k ≥ 2.

In view of (4.5) and (4.6) it is sufficient to show that√
(1− α)(1− ξ)

h(k)
√

[k(1 + β)− (α+ β)[k(1 + β)− (ξ + β)]

≤
√

[k(1 + β)− (α+ β)][k(1 + β)− (ξ + β)](1− δ)√
(1− α)(1− ξ)[k(1 + β)− (δ + β)]

for k ≥ 2

which simplifies to

(4.7) δ ≤ 1− (1 + β)(k − 1)(1− α)(1− ξ)
[k(1 + β)− (α+ β)][k(1 + β)− (ξ + β)]h(k)− (1− α)(1− ξ)

where

h(k) =
(a)k−1(2− γ + η)k−1(2)k−1

(c)k−1(2− γ)k−1(2− µ+ η)k−1
for k ≥ 2.

Notice that h(k) is a decreasing function of k (k ≥ 2), and thus δ can be chosen as

below.

δ = 1− (1 + β)(1− α)(1− ξ)
(β − α+ 2)(β − ξ + 2)h(2)− (1− α)(1− ξ)

for h(2) defined by (3.3). This completes the proof. �

Theorem 4.2. Let the function f(z) and g(z) be defined by (2.1) be in the class

Kµ,γ,η(α, β). Then (f ∗ g)(z) ∈ Kµ,γ,η(δ, β), where

δ = 1− (1 + β)(1− α)2

(β − α+ 2)2h(2)− (1− α)2

for h(2) given by (3.3).

Proof. Substituting α = ξ in the Theorem 4.1 above, the result follows. �

Theorem 4.3. Let the function f(z) defined by (1.2) be in the class Kµ,γ,η(α, β).

Consider

g(z) = z −
∞∑
k=2

bkz
k for |bk| ≤ 1.
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Then (f ∗ g)(z) ∈ Kµ,γ,η(α, β).

Proof. Notice that

∞∑
k=2

[k(1 + β)− (α+ β)]h(k)|akbk|

=
∞∑
k=2

[k(1 + β)− (α+ β)]h(k)ak|bk|

≤
∞∑
k=2

[k(1 + β)− (α+ β)]h(k)ak

≤ 1− α using Theorem 2.1.

Hence (f ∗ g)(z) ∈ Kµ,γ,η(α, β). �

Corollary 4.4. Let the function f(z) defined by (1.2) be in the class Kµ,γ,η(α, β). Also

let g(z) = z −
∞∑
k=2

bkz
k for 0 ≤ bk ≤ 1. Then (f ∗ g)(z) ∈ Kµ,γ,η(α, β).

Next we prove the following inclusion property for functions in the class Kµ,γ,η(α, β).

Theorem 4.5. Let the functions f(z) and g(z) defined by (2.1) be in the class Kµ,γ,η(α, β).

Then the function h(z) defined by

h(z) = z −
∞∑
k=2

(a2
k + b2k)z

k

is in the class Kµ,γ,η(θ, β) where

θ = 1− 2(1 + β)(1− α)2

(β − α+ 2)2h(2)− 2(1− α)2

with h(2) given by (3.3).

Proof. In view of Theorem 2.1 it is sufficient to show that

(4.8)

∞∑
k=2

[k(1 + β)− (θ + β)]h(k)

1− θ
(a2
k + b2k) ≤ 1.

Notice that, f(z) and g(z) belong to Kµ,γ,η(α, β) and so

(4.9)

∞∑
k=2

[
[k(1 + β)− (α+ β)]h(k)

(1− α)

]2

a2
k ≤

[ ∞∑
k=2

[k(1 + β)− (α+ β)]h(k)

(1− α)
ak

]2

≤ 1

(4.10)

∞∑
k=2

[
[k(1 + β)− (α+ β)]h(k)

(1− α)

]2

b2k ≤

[ ∞∑
k=2

[k(1 + β)− (α+ β)]h(k)

(1− α)
bk

]2

≤ 1 .

Adding (4.9) and (4.10), we get

(4.11)

∞∑
k=2

1

2

[
[k(1 + β)− (α+ β)]h(k)

(1− α)

]2

(a2
k + b2k) ≤ 1.
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Thus (4.8) will hold if

[k(1 + β)− (θ + β)]

1− θ
≤ 1

2

h(k)[k(1 + β)− (α+ β)]2

(1− α)2
.

That is, if

(4.12) θ ≤ 1− 2(1 + β)(k − 1)(1− α)2

[k(1 + β)− (α+ β)]2h(k)− 2(1− α)2
.

Notice that, θ can be further improved by using the fact that h(k) ≤ h(2) for k ≥ 2.

Therefore,

θ = 1− 2(1 + β)(1− α)2

(β − α+ 2)2h(2)− 2(1− α)2

where h(2) is given by (3.3). �

5. INTEGRAL TRANSFORM OF THE CLASS Kµ,γ,η(α, β)

For f(z) ∈ Kµ,γ,η(α, β) we define the integral transform

Lλ(f)(z) =

∫ 1

0

λ(t)f(tz)

t
dt

where λ(t) is real valued, non-negative weight function normalized such that∫ 1
0 λ(t)dt = 1. Note that, λ(t) have several special interesting definitions. For instance,

λ(t) = (1 + c)tc, c > −1, for which Lλ is known as the Bernardi operator. For

(5.1) λ(t) =
2δ

Γ(δ)
t(log

1

t
)δ−1, δ ≥ 0

we get the integral operator introduced by Jung, Kim and Srivastava [8].

Let us consider the function

(5.2) λ(t) =
(c+ 1)δ

Γ(δ)
tc(log

1

t
)δ−1, c > −1, δ ≥ 0.

Notice that for c = 1 we get the integral operator introduced by Jung, Kim and Srivas-

tava.

We next show that the class is closed under Lλ(f) for λ(t) given by (5.2).

Theorem 5.1. Let f(z) ∈ Kµ,γ,η(α, β). Then Lλ(f)(z) ∈ Kµ,γ,η(α, β).

Proof. By using the definition of Lλ(f), we have

(5.3) Lλ(f) =
(c+ 1)δ

Γ(δ)

∫ 1

0

tc(log 1
t )
δ−1f(tz)

t
dt

=
(c+ 1)δ

Γ(δ)

∫ 1

0
(log

1

t
)δ−1tc

(
z −

∞∑
k=2

akt
k−1zk

)
dt.

Simplifying by using the definition of gamma function, we get
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(5.4) Lλ(f) = z −
∞∑
k=2

(
c+ 1

c+ k

)δ
akz

k.

Now Lλ(f) ∈ Kµ,γ,η(α, β) if

(5.5)

∞∑
k=2

[k(1 + β)− (α+ β)]h(k)

(1− α)

(
c+ 1

c+ k

)δ
ak ≤ 1.

Also by Theorem 2.1 we have f ∈ Kµ,γ,η(α, β) if and only if

(5.6)
∞∑
k=2

[k(1 + β)− (α+ β)]h(k)

(1− α)
ak ≤ 1.

Thus, in view of (5.5) and (5.6) and the fact that
(
c+1
c+k

)
< 1 for k ≥ 2, (5.5) holds true.

Therefore, Lλ(f) ∈ Kµ,γ,η(α, β) and the proof is complete. �

6. EXTREME POINTS OF Kµ,γ,η(α, β)

Theorem 6.1. Let

(6.1) f1(z) = z

and

(6.2) fk(z) = z − (1− α)

[k(1 + β)− (α+ β)]h(k)
zk, (k ≥ 2).

Then f(z) ∈ Kµ,γ,η(α, β) if and only if f(z) can be expressed in the form

f(z) =

∞∑
k=1

λkfk(z)

where λk ≥ 0 and
∞∑
k=1

λk = 1.

Proof. Let f(z) be expressible in the form

f(z) =
∞∑
k=1

λkfk(z).

Then

f(z) = z −
∞∑
k=2

(1− α)

[k(1 + β)− (α+ β)]h(k)
λkz

k.

Now,

∞∑
k=2

(1− α)λk
[k(1 + β)− (α+ β)]

[k(1 + β)− (α+ β)]h(k)

(1− α)
=

∞∑
k=2

λk = 1− λ1 ≤ 1.

Therefore, f(z) ∈ Kµ,γ,η(α, β).
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Conversely, suppose that f(z) ∈ Kµ,γ,η(α, β). Thus,

ak ≤
(1− α)

[k(1 + β)− (α+ β)]h(k)
(k ≥ 2).

Setting

λk =
[k(1 + β)− (α+ β)]h(k)

(1− α)
ak (k ≥ 2)

and λ1 = 1−
∞∑
k=2

λk, we get

f(z) =
∞∑
k=1

λkfk(z).

This completes the proof. �

7. CLOSURE THEOREM

Theorem 7.1. Let the function fj(z) defined by (2.1) be in the class Kµ,γ,η(α, β). Then

the function h(z) defined by

h(z) = z −
∞∑
k=2

ekz
k belongs to Kµ,γ,η(α, β)

where fj(z) = z −
∞∑
k=2

ak,jz
k, j = 1, 2, · · · , `, and

ek =
1

`

∑̀
j=1

ak,j (ak,j ≥ 0).

Proof. Since fj(z) ∈ Kµ,γ,η(α, β), in view of Theorem 2.1, we have

(7.1)
∞∑
k=2

[k(1 + β)− (α+ β)]h(k)

(1− α)
ak,j ≤ 1.

Now,

1

`

∑̀
j=1

fj(z) =
1

`

∑̀
j=1

(
z −

∞∑
k=2

ak,jz
k

)

= z −
∞∑
k=2

ekz
k

where ek = 1
`

∑̀
j=1

ak,j .
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Notice that,

∞∑
k=2

[k(1 + β)− (α+ β)]h(k)

(1− α)

1

`

∑̀
j=1

ak,j ≤ 1, using (7.1).

Thus, h(z) ∈ Kµ,γ,η(α, β). �

8. RADIUS OF STARLIKENESS, CONVEXITY AND

CLOSE-TO-CONVEXITY

Theorem 8.1. Let f(z) ∈ Kµ,γ,η(α, β). Then Mµ,γ,η
0,z f(z) is starlike of order s, 0 ≤ s <

1 in |z| < R1 where

(8.1) R1 = inf
k

[
(1− s)[k(1 + β)− (α+ β)]

(1− α)(k − s)

] 1
(k−1)

.

Proof. Mµ,γ,η
0,z f(z) is said to be starlike of order s, 0 ≤ s < 1, if and only if

(8.2) Re

{
z(Mµ,γ,η

0,z f(z))′

Mµ,γ,η
0,z f(z)

}
> s

or equivalently ∣∣∣∣∣z(M
µ,γ,η
0,z f(z))′

Mµ,γ,η
0,z f(z)

− 1

∣∣∣∣∣ < 1− s.

With fairly straight forward calculations, we get

|z|k−1 ≤ (1− s)[k(1 + β)− (α+ β)]

(1− α)(k − s)
, k ≥ 2.

Setting R1 = |z|, the result follows. �

Next, we state the radius of convexity using the fact that f is convex, if and only if

zf ′ is starlike. We omit the proof of the following theorems as the results can be easily

derived.

Theorem 8.2. Let f(z) ∈ Kµ,γ,η(α, β). Then Mµ,γ,η
0,z f(z) is convex of order c, 0 ≤ c < 1

in |z| < R2 where

R2 = inf
k

[
(1− c)[k(1 + β)− (α+ β)]

k(1− α)(k − c)

] 1
(k−1)

.

Theorem 8.3. Let f(z) ∈ Kµ,γ,η(α, β). Then Mµ,γ,η
0,z f(z) is close-to-convex of order

r, 0 ≤ r < 1 in |z| < R3 where

R3 = inf
k

[
(1− r)[k(1 + β)− (α+ β)]

k(1− α)

] 1
(k−1)

.
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Thoerem 8.4. Let f(z) ∈ Kµ,γ,η(α, β). Then Lλ(f) is starlike of order p, 0 ≤ p < 1 in

|z| < R4 where

R4 = inf
k

[
(1− p)[k(1 + β)− (α+ β)]h(k)(c+ k)δ

(1− α)(k − p)(c+ 1)δ

] 1
(k−1)

.

Theorem 8.5. Let f(z) ∈ Kµ,γ,η(α, β). Then Lλ(f) is convex of order q, 0 ≤ q < 1 in

|z| < R5 where

R5 = inf
k

[
(1− q)[k(1 + β)− (α+ β)]h(k)(c+ k)δ

k(1− α)(k − q)(c+ 1)δ

] 1
(k−1)

.

Theorem 8.6. Let f(z) ∈ Kµ,γ,η(α, β). Then Lλ(f) is close-to-convex of order m, 0 ≤
m < 1 in |z| < R6 where

R6 = inf
k

[
(1−m)[k(1 + β)− (α+ β)]h(k)(c+ k)δ

k(1− α)(c+ 1)δ

] 1
(k−1)

.
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